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ABSTRACT

Quantum mechanical expressions for the relaxation time and
shear viscosity have been derived by Mueller for a gas consisting

of loaded sphere molecules. These expressions are expanded in

Z
OVEaar

quantum region. The coefficients of the first four terms for

i.e. in the strong

power series in '.i"- where X =

the reciprocal of the relaxation time are evaluated numerically.
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SECTION I
INTRODUCTION

Quantum mechanical expressions for the reciprocal of the relaxation
time and shear viscosity (and other transport coefficients) have been
derived by Mueller1 for a gas consisting of loaded sphere molecules.
These results express "-%P and “,L?' as power series in "31- where g~
is the diameter of the molecule and é? is the displacement of the
center of mass from the geometric center. Expressions for the

coefficients of the zeroth, first and second order terms have been

derived. The results are:
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The series development is not explicit in Eq. 1-2, (see Eq. 1-5)
but is explicit in Section IV.

The phase shift is given by

N (Ho) = ,ziw”[(-d‘” M} (1-10)

Iré (Ho')

where H is the propogation vector.




Mueller considered the classical limit of Eqs. 1-1 and 1-2.
The purpose of this report is to evaluate the strong quantum limit
and develop a series valid in the strong quantum region. Specifically

we consider an expansion of Egqs. 1-1 and 1-2 in power series in ‘#’z_
h
VVZ,I/A”

The first step in considering Eqs. 1-1 and 1-2 is the evaluation

where x =

of the sums over //‘ and //‘-o These summations are carried out

in section II. The next step is the reduction of Eqs. 1-3 through

1-9 to quantities involving Bessel functions. This is accomplished
by expressing the trigonometric functions of 'l} and the derivatives
of }1) entirely in terms of/é,,; ll) and using Eq. 1-10 for/é;p 7)
Once this is accomplished we use the explicit expressions for the

low order Bessel functions. This process is carried out in Section III.
In the last section we sum the appropriate moments of the cross
section over A . This series in ) is truncated after the
first or second term and the terms expanded in a power series in Hf .
The integral is then integrated termwise to give a power series in

!

| . , ,
= . The result is L and —‘l(- as power series in ——

X T 3



SECTION II

-— g, —'6'
THE SUM OVER ./ AND_/

e &
iy
In this section tlke sum over/A/ and ¢/ 1is carried out for

both :#. and 1 . Before evaluating these sums several quantities

are defined. These are

e (2-1)
o ﬂ,‘f

where 75 is Planck's constant and //5/ is the reduced mass of a
pair of colliding molecules & and 4 , the kinetic energy of relative

motion

F= A"y (2-2)

the dimensionless quantities

~ £
Y2 Vier -9
&
€ = Tf/fl-“) (2-4)
where
2
e = _h_
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The bar above a quantum number or variable indicates the value before
collision. The superscript & or 4~ serves to distinguish between
the two colliding molecules.

Conservation of energy requires that

2z -

= F-x @

In the development that follows it is more convenient to work with

the variable

2= HT @)

rather than X . We combine this definition with Eqs. 2-2 and 2-3

to obtain Y in terms of Z—

A
X—,ﬂ‘ "7

We then define

zZ

X = h (2-9)

so that
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We now proceed to evaluate the sum over / and £ for #

Substitution of Eq. 1-3 into 1-1 gives the following:
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which is the factor in the terms of the sum which depends upon A
& a &
and _¢ . ‘When the sum over ,{ and / is carried out we
obtain only four non-zero terms because the bracketed quantity is

zero in all but the four cases listed in Table 2-1.




TABLE 2-1

a o
AT (Gl (Su)dimy X
— _
+1 0 /::/ 2—8(/"‘5
277/
_.i_ 28 /74’—
-1 0 7/70:_,,/ "‘7;‘
A 24 (/%)
- & (A #/
0 + 27 %/ 7
-0
A 2 ;¢
- - - 28 7/
0 ! 27%7 7

It is important to note the dependence of the integral in Eq. 2-12
- ¢

on the four quantum numbers / ¢ A / . The VLX and '.f-l)

can all be written in terms of Y and ?‘ , and Y can be written
8; = X (Eq. 2-7). Thus, the only dependence of the integral on the
_{ quantum numbers is through X . The values of X in the

four non-zero cases are listed in Table 2-1. We therefore define

A(Xze ) Xf{ zre 27»:)(7 '7»*7 7,433%2 13)
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Thus, after summing over ‘4/ and ,4’ , the expression 2-12

becomes simply

Ay 1 L7 (2-15)

and Eq. 2-11 becomes
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Explicit expressions for the ,dx are obtained in Section IV.
{
We now turn to the evaluation of —,E . Substitution of
Eq. 1-5 into Eq. 1-2 gives
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which can be written as

- S\ L
A= = 4+ g
RO A 220

Qi
This is an explicit formulation of N as a power series in <=

We first consider the zeroth order term. This is the quantum
expression for the rigid sphere case, which was first obtained by

Uehlingz. From Eqs.(2-21)and(2-20), it is seen that
=2

4 _ Z S - - € ra - -6 s€rs -E7é
= ———— (ai4) ¢ f] (274) (245D €
70 5 v mKi ; quth/‘.

Substitution of Eq. 1-6 into Eq. 2-22 gives
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The factor S/:/‘.' S /‘.requlres the internal quantum number for each
molecule to be the same before and after the collision. Thus ¥= ¥
- - G-
and X‘; O . Therefore the integrand is independent of _7 and _/
a -~
for the only term in the sum over / and / which is not zero.
- _6_

Hence, we can factor the integral out of the sum over _¢ and ¢ .

Then, after interchanging the order of the sum over ) and the

integration, we obtain
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This result is considered further in section IV.

We now consider the second order term in Eq. 2-21
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We rewrite this as
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When we sum the first term over //— and /{ we again obtain only one

non-zero term, because of the factor, é’(!f"' S YL in Eq. 1-7, the

Q@ -4 &~
term for which /= 4 and A 9,{"’ . Since X=0 , the integral
. - ~ ¢ . ]
does not depend upon either /¢ or _/ and can be factored out

of the sum. The first term in A then becomes
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As in the "}I' term the last two sums cancel leaving
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When we sum over //‘l and/kin the second term of Eq. 2-28 we
obtain only four terms because the first bracketed quantity in
Eqs. 1-8, 1-9, and 1-4 is zero except in the four cases listed in
Table 2-1. The development from this point is analogous to the

development of ‘7L; . For simplicity we factor the bracketed term




out of Eqs. 1-8, 1-9, and 1-4 so that the second term in Eq. 2-28 becomes
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where the tilda above a quantity indicates that the bracketed term
has been factored out and removed. The factor in the terms of the

sum which depends upon /‘ and /pis then
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We now define a quantity }~ analogous to g
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and also define

~ A () F (LD (43D
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After summing over /4’4 and A/ the expression (2-31) then becomes
(2-34)

and the second term in ’%' becomes
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As in the analogous expression for £ , Eq. (2-16), the sum reduces

and we obtain
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Explicit expressions for the ¥ p are obtained in section IV.




SECTION III
EVALUATION OF THE CROSS SECTION AND ITS MOMENTS

The next step in the evolution of the transport coefficients is
the reduction of Eqs. 1-3 through 1-9 to expressions involving only
polynomials in Z . This is accomplished by expressing the trigono-
metric functions of K)‘ and the derivatives of Vl) which occur in
Egs. (1-3) through (1-9) in terms of Bessel functions. The Bessel

functions are then reduced to polynomials. For example,
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Similar expressions can be derived for the other trigonometric
functions of 'I and derivatives of
> (%
Before writing these down, however, it is convenient to simplify
two terms which appear frequently in these expressions. These terms

have the general form

J; J;-u +Jj/ J;//

and

p—

J——‘/ \Jy—z - 0—/ Ja-y

The first is simply Lommel's formula3

J;(Z)\Z;(z) SUNONINE (’7%2 s /7 = /")/.ié%> o

Using this equation and the recurrence relation

2/ (3-4)

(D 43, 02) = 5 J(2)

it is easy to derive a similar expression for \),/ \//‘-2.- d/ J;n‘,
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72y

Therefore, the second bracketed term in Eq. 3-2 becomes
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Similar derivations yield the following results:
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For small values of )\ the remaining combinations of Bessel
functions can be reduced to polynomials rather eagily using Eq. 3-4

in conjunction with the two equations

r—y

z -

2

However, for larger values of A this process becomes rather

unwieldy. A simpler procedure makes use of the following two

formulass,
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As an example of how these are used, let us consider
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Before adding these two equations we note that
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Clearly, then

1 i
1 20 >7/ £5(n-)

-
- (£ -
+Inmk = (Z2)| (YA ) # B, (3-17)
r=0 r=0

Similar equations can be derived for the other quantities. The

results are:

£4[ma) £3) 2206 £206-D

- 2
J-h“)*id'\“i +J——(Nz)--§_:[)-§,: -(%2)[2 Z 4/\#‘)0— A)r’+Z ; B)"n" B‘\'rl
ro rze / rzo r=e
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T . T —_ N EHR 430> £400-D
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ro rio

r=0 r-o

BA‘I’

-llr

N#£0
(3-19)
It is thus possible to express the trigonometric functions of

Yl) and the derivatives of Vl) simply in terms of ratios of
polynomials. These functions could then be substituted into equations
1-3 through 1-9 to give the cross section and the moments of the

cross section in terms of polynomials of Z .
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SECTION IV
{ } l
EXPANSION OF 7— AND ? IN POWER SERIES AND NUMERICAL CALCULATIONS OF —7':'_

In this section we transform Eqs. 2-18, 2-26, and 2-37 to forms
which may be evaluated numerically. The above equations are considered
in order.

To evaluate Eq. 2-18 we need an expression for /4( . Hence we
need an expression for ,a(x;z;) (Eq. 2-13). From Egs. 3-15 and 3-17

we obtain the result

GG (F) ()
[T 03] [Ty * T [Trst s ] [L s o]

! =y =1 _
'(A'Z»j" 7A7A+/"

We now consider the sum over /\ with the aid of Eq. 3-17:
For /\:O
=2
(=t =4 = ZL
'70 ,)u * ')0 '7. = St * o= (4-1)
Z *l 2 +/
For A:
A -
(=) =1 Z 29 21 24

~=
-~
N
+
‘:3
-
|

_ _Z (4-2)
2 2% Z'4+33%+9 +2"+/ 2%r32%+ 9

We truncate the sum at this point. By expanding the denominators in

power series we find that (for Z{ | )



25

Yoo ni i) = (22" 22" )+ (Z-2% 242% )

2 T 4 = BN A -2 - —
+3(2 -2 2428 ) 1 2 (22254224 ) 4
(4-3)

> =¥
We now change variables from Z to £ = where
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¥ =¥
and eliminate é? to obtain an expression in terms of ﬁ; and X

Thus
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=
In terms of F , the integral in Eq. 2-13 becomes

= Y . - —S¥ }
4 [V E*‘);/m('z,’q;,,* M) €5 d E* “e

Thus, Eq. 2-13 becomes
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2(x5)= "[f\/fix’ E 3 (38-x) - ;L,, (2 E7-2x E"+X%)
K2 K7

A 22 »3 2 —¥
* (T E S22k L T X)

- L (Pt e £ m R AN E ) ENE

(4-7)

kb

The series in the above integral is convergent only when Z’( } and
;§’< | (Eq. 4-3) and the limits on the integral are zero and infinity.
The integrand, however, contains Cé.-,—as a factor. Since [?ﬁ: P i j?z
this factor, for large values of )CL, considerably dampens the
contribution of large values of é?' to the integral. The result

of integrating the divergent series is then probably an asymptotic

series. Thus from the above result it follows that

T 4-
/d(X:z‘e> - i‘ Ji" ﬂz(XirO) ‘“)E'ﬂq(xf')'*é"d&(“'f’)-i’?ﬂl&zr{)} 8)
where

2, (x5)= 2x°F =X’ £
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Ay (%5 YA -2xX’E px1E
2 g _ 333 27 vt _
,oé()(%;): ’7“X5 s XA 5 X'F

o 5
S (xE)= Z.x"ﬁ'«i‘!."x35 Bt -Lx Frx'f

20) =~ 7 27
(4-9)
and
— _yMs -E¥ | _s

/';:J'Etx £ e JE (4-10)
Thus /o(X'zIa> is expressed as a power series in ‘;l“; . If we
define

Aﬂ& - A Ay (-2) + (440 A (L1 (4-11)

2.8 +/

then from Eq. 2-14 we find that

4 -
:2[7 A " AIJ"';('J‘I').g'J&(* ] (4-12)

Equation 2-18 thus becomes
& LA -1
1 - 87110 (g)'- Z/MH)C (}" 24 ;-v “es *';‘ “ 58 Ay 2
T S (2041 €54 (4-13)
Z
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If we define

Soud €% g, ,
S;, = £ (4-14)

— -€
Sty et
A

SO

— STnd® [ [B\“ - - .
Lo BT O[S 3505 S RS ] e

We are now in a position to evaluate "—} numerically. S,, depends
upon the quantity X , which in turn depends upon £ and g.
In the calculations, a value for % is chosen and the four Sn

values computed. The quantity

A
5= ?252.——!%5‘,*";656"5353*

. , . . the ,
is then computed. 1If the series is asymptotlc/a%solute error in S
will be less than the last term retained in the series. Values 5f 5-,.’

for nine values of _;Q; are given in Table 4-1. The classical limit

for —,[___ is
/
1 - /éi‘fw- [ 7 _é)
7-
Therefore, the quantity ——-— is the reciprocal of the ratio of the

‘I~9

relaxation time to the value in the classical limit. A plot of-— S

against ‘Z;‘L for -—',ﬁf = 2,1, .5, .25, .125, .0625, and .015625 is

given in Fig, 1.




w O G

nny e

. 3582
3.803
46.06

545.9

. 125

1.814
5.820
29.06

156.1

8.386

43.80

293.4

1976.

L0625

.9513

2.959

14.61

77.95

Table 4-1

8.446
34.11
194.5

1158.

. 03125

.4875
1.491
7.322

38.94

5.605

20.47

109.3

615.0

. 015625

. 2468

. 7478

3.664

19.46

29

.25

3.314

11.19

57.20

311.8



1 @an8t4d

TS

I

el




We now turn our attention to Egs. 2-26. In order to compare this
with Uehling's result2 on the rigid sphere we must consider the effect
of Bose-Einstein statistics. Formally the expansion is obtained from

that for Boltzmann statistics by summing only over even values of A

and multiplying by 2. Eq. 2-26 thus becomes, in the Bose Einstein case,

L= HEZ Ty’ g 2
(erc»

We now transform variables from Y to Z (Eq. 2-10).

L - 647 Z Dud(M) 58 2

" S/TmkT (Z2+3)
Alercn)

JZSMQ(Q“ -n) € iy dZ (4-17)

In the sum over /\ we tak only the /\"‘0 term . Eq. 3-7 gives
M S
ALl (,’M;,)b and Eq. 3-17 allows 3-7 to be evaluated in terms of 22 .

The result is

- 2 q9 /
AL (,72-')‘): 32. -/——-z—-? (4-18)
-+ 211'—2—4
Thus Eq. 4-17 becomes
L - 484 707 jg” ___:?.__9 C;‘Z d7Z (4-19)
VT & rmkT 15t 54

31
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The ratio of polynomials in the integrand is expanded in a power

series. This gives

1287 5 o
‘/io./ /5 TmKT f(z -32 *’272*)@ dZ (4-20)

But

an+l

Y
n

1|

2,2
e 4z

Qz-n-*'b (4-21)

SO

R 2 / /
L. _gfmel j‘%[%,é."‘_w,»’;’v?f_-’?‘f 22
N~ 15/FmkT X 3 X
or
1l =

(4-23)

Y, Fﬁﬁ??b A Al

The first term in this expansion agrees with the result obtained by
Uehling. It can be pointed out that if another term in the sum over
A > ( AZ'). ), is considered and a similar procedure carried out,
the largest correction term is of the order of ?§) .
For Fermi-Dirac statistics we sum Eq. 2-26 over odd values of A

and multiply by 2. This gives

L. 470" DO+

‘70 5|/7‘mk7‘ (’~h+3) sz ’“"’2(7)# )6 JZ'@ 24)

(edd)
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In summing over A we take only the /\2/ term. Again we use

Eq. 3-7 and Eq. 3-17 to evaluate M’"(/))ﬂ-q))

- _ 25 (4-25)
e ('73' )= z¢ /f1+_§-’— 4 225 4 225

Eq. 4-24 becomes

-3z
_L... fetmetay( 2 e dZ
/ o 225
V7TmkT /v 5’-’2&4 z;6+ 2z

We expand the ratio of>po_1ynomials,

1 . 6é47st 1 / 13 3 15 1367 517
'L'l/wm/cT’ 226 (Z”‘éz *;;52 ji2g & )e JZ—

(4-26)

and integrate using Eq. 4-21 to find that

<
T SaaRT[ A T T 3T S AT T as we

(4-27)

In this case the first correction term is of order ‘%n,

‘We now turn to the evaluation of 7’7'2- (Eq. 2-37), and consider
only the case of Boltzmann statistics. In the evaluation of the
first term (Eq. 2-29), we retain only the /\';0 and \=/ terms

in the sum over /\ . From Eq. 1-7 we obtain




e-:0y _ _ BT o (D) (WD) ‘ ' .
L ER i Z; D25 (M5 w2 (1, 71,)

@7 (7975 = —";’ (1,-n)) 4iw2.(1,-1,)

This can be evaluated from Eq. 3-10 and 3-15

Qn) N Aoadi T 7-29
A = - 3277
Aproic, (TITT) (2#+32%+9)

Thus this term in Eq. 2-29 becomes, after transforming the integration

variable to i? :

67t 3 7% "XZ
" S Y |2 L e e
(2%+32*+9)

We expand the polynomial ratio and obtain

26670 =xe’
5YTmkT 27{(32 227*';"‘2’3)6 dz

Integrating with the aid of Eq. 4-21 gives:
256 Tor™ /- ® + L6 léo |
e —————— 1

In a similar manner it is found that for)\=1, Eq, 2-29 becomes




2
25270 [y 4, — 5% 1
S TmkT T4 5 xé

Combining these last two equations gives the first term of ;7
<

through sixth order in ‘%‘

2567 0° 2L — 5984 2 (4-28)

T s o

We now turn to the second term in ‘,Li (Eq. 2-36). To evaluate
L=

this we need an expressmn for r(xr)(Eq 2-32). This requires

~

expressions for Z‘/ ( ,/2, &M(,{"",{ /",/“)z, and
Il—'-é/ (/ ,(,("IZ) We take each of these in turn and expand

them in a power series in Z and sum over )\ at the same time.
Care must be taken at this point to retain all terms of the required
order. For ; (-q 7t ‘)we retain parts of the /\ 2 term.

2AS
In each case we use Eqs. 3-7 through 3-16 to reduce the above
quantities to expressions involving Bessel functions. Then Eqs. 3-17
through 3-19 are used to reduce the Bessel functions to ratios of

polynomials which are then expanded. The results are

v)

7 R _ L7, _ (4-29)
Z/(L[ ///92— 7 [; Z Z+ ZL*Z"ZZ Z*?]

’
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£
£s
[
7
\1‘
=
N
4

mv\m

[(z +2%)-(2%2%)- % ézz" (4-30)

f (ji/f/,/ IZ) = Z Z [0/ 5‘(Z+Z ﬂ (4-31)

Before substituting these three equations into r(xze) , we change

the integrat.on variable in Eq. 2-32 from r to 2 ,

A (1)

I\ »3 ~¢ =7 D ., —
F(xze)= X f Z,C (7 z’+@£(/'uw>, z’

i o
+ 5 L e, Ptz

(4-32)

We now substitute Eqs. 4-23, 4-30 and 4-31 into Eq. 4-32. We change

the variable of integration from Z to £ vwhere

The result is

F(x2) = é:[ lo(X5p) r 4 1 65+ Ju (B4 Jeo-3

where

1513
(x%)= 317 ae




A 8 z
e Eds -2 (50 2 ar, e ]

T
e (X ;7;5 = 3%‘;5 [336-/:st +/axj

. g0 [ 52 _52 7 2
7 | %5 7;—5*75’5+z75"cj

I1f we define

bne =

<2 (L) + (LD r (L+1)
244/

then Eq. 2-33 becomes

’1? = éi[erJ 4L';1 raj +'f§h Ve ""';I

and Eq. 2-36 becomes

-5
& VrmkT’

or

¥

S\VamkT’

where

~¢
glun) C (et et s

gt )

Z’I ALH) 6‘6‘(
<

[RrgrrfiRe ]

(4-34)

(4-35)

(4-36)

(4-37)

(4-38)
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The ﬂ?h may be evaluated numerically.

(4-39)
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APPENDIX I

Certain combinations of Bessel functions appear quite frequently
in evaluating the cross section and its moments. These are listed

below for small values of A R

— T _— 2.
54, = 72
T o 2
\J:}i *‘d_% = 7z ( I*’Eé%)
* T
J'_% +d2; 7_3,(/+z1,+—7-
B Tt 2.
B - = 228
J-2+J7 = (’*z'*gsﬁ* :)

T e 2 0, I35 , /5
\J—J;_h/ %, = ‘7/."2‘[/,4-;7' 2 *’%’2 7P/zozs'>
Iy Is, +J, J-5, = 72 (3)(3-2%)

\)}/1_ JZ +I}, vy = 72 (2")(/‘;”2 )
2
7

(£ (35475 24 1522 ‘)



Joy “Jp Iy =
J-3 - I35 0% =
Jg-03 U, =
J—z "‘},_J% -

40

- 5. (F) (452232

- = (—;) (1576 4220243027, 42°)




References

J. J. Mueller, Dissertation, University of Wisconsin, 1965.
E. A. Uehling, Phys. Rev. 46, 917 (1934).

G. N. Watson, A Treatise on the Theory of Bessel Functions,

(Cambridge, 1952), p. 46.
ibid., p. 45.

ibid., pp. 53, 55.

41




